
Survey on Online Streaming Continual Learning

Nuwan Gunasekara1 , Bernhard Pfahringer1 , Heitor Murilo Gomes2 and Albert Bifet1,3
1AI Institute, University of Waikato
2Victoria University of Wellington

3LTCI, Télécom Paris
ng98@students.waikato.ac.nz, {abifet,bernhard}@waikato.ac.nz, heitor.gomes@vuw.ac.nz

Abstract
Stream Learning (SL) attempts to learn from a data1

stream efficiently. A data stream learning algorithm2

should adapt to input data distribution shifts with-3

out sacrificing accuracy. These distribution shifts4

are known as ”concept drifts” in the literature. SL5

provides many supervised, semi-supervised, and6

unsupervised methods for detecting and adjust-7

ing to concept drift. On the other hand, Contin-8

ual Learning (CL) attempts to preserve previous9

knowledge while performing well on the current10

concept when confronted with concept drift. In11

Online Continual Learning (OCL), this learning12

happens online. This survey explores the intersec-13

tion of those two online learning paradigms to find14

synergies. We identify this intersection as Online15

Streaming Continual Learning (OSCL). The study16

starts with a gentle introduction to SL and then ex-17

plores CL. Next, it explores OSCL from SL and18

OCL perspectives to point out new research trends19

and give directions for future research.20

1 Introduction21

Stream Learning (SL) focuses on efficiently learning from22

streaming data by learning from one instance at a time. The23

requirements for Stream Learning are: to predict at any24

given moment, dynamically adapt to underlying data distri-25

bution changes (concept drifts), and be computationally effi-26

cient when learning and predicting [Bifet et al., 2018]. Data27

streams are often assumed to be IID, but in most cases, data28

streams are often non-IID as the data distribution changes29

over time.30

Continual Learning (CL), attempts to learn from a non-IID31

data stream to preserve and extend already accrued knowl-32

edge [Mai et al., 2022]. The learning algorithm is expected to33

strike a balance between stability and plasticity as the stream34

undergoes distribution shifts. Furthermore, in Online Contin-35

ual Learning (OCL) this learning happens online; thus, the36

learning algorithm is only allowed a single pass over the data37

[Mai et al., 2022].38

We identify Online Streaming Continual Learning (OSCL)39

as the intersection between Stream Learning and Online Con-40

tinual Learning. OSCL allows well-researched SL fields41

Model

D1| |D2| |D3| … |Di| … |DT

D1| |D2| |D3| … |Di| … |DT

Tr
ai

n
Te

st

Model attempts to detect the end of the distribution.

SL

Model

D1| |D1..D2| |D1..D3| … |D1..Di| ... |Dn1..DT

D1| |D2| |D3| … |Di| … |DT

End of the distribution signal provided to the model
only at task-incremental.

End of the distribution signal provided to the model
(model may be unaware of this signal)

OCL

Tr
ai

n
Te

st

Figure 1: Comparison between SL and OCL settings.
SL: uses drift detectors discussed in section 2.1 to detect distribution
shifts, and evaluation is discussed in section 2.3. OCL: uses evalua-
tion metrics (equations 1, 2, 3, and 4) discussed in section 2.3. The
models in this setting do not detect distribution shifts. OSCL pro-
poses some of the techniques used in SL to be used in OCL.

such as efficient stream learners, concept drift detection, and 42

adaptation to enhance or develop OCL methods. This survey 43

attempts to understand the intersection of those two closely 44

related fields, considering the underlying setting, evaluation45

methods, and applications. It also suggests future directions46

for OSCL taking into account recent advances in SL.47

The rest of the paper is organized as follows. Section one48

explains Stream Learning considering the setting, drift adap-49

tation, methods, evaluation, and applications. The next sec-50

tion explores Continual Learning considering the same cri-51

teria except for drift adaptation. Figure 1 compares Stream52

Learning (SL) and Online Continual Learning. Section 453

explains some of the intersection points between these two54

fields. These intersection points lay the ground for OSCL55

setting. This is further explained in this section considering56

new trends and future directions. Finally, we provide our con-57

clusions in the last section.58

2 Stream Learning59

In Stream Learning, a model learns from an evolving data60

stream (non-IID data), processing one instance at a time. The61

learner must predict at any given moment using limited pro-62

cessing and memory [Bifet et al., 2018; Gomes et al., 2017a].63

Also, it should adjust to distribution changes in the underly-64

ing input distribution [Bifet et al., 2018; Bifet and Gavalda,65

2007]. A shift in the data distribution is identified as a con-66

cept drift in literature.

Figure 2: Evolution of different drift types under the ”Evolution
of relationship between features and the target and the speed of
change” category: abrupt, gradual, and incremental. Source: [Souza
et al., 2020].

67

2.1 Concept drift68

Concept drifts can be categorized according to their impact69

on the decision boundary, the evolution of the relationship70

between features and the target, speed of change, reach, and71

recurrence [Suárez-Cetrulo et al., 2023].72

• Effect on the decision boundary (impact): the literature73

describes real and virtual concept drifts. The former ef-74

fects the the decision boundary of the model. This af-75

fects the performance of the model. The latter does not76

affect the decision boundary. Hence the model perfor-77

mance is unaffected [Ramı́rez-Gallego et al., 2017].78

• Evolution of the relationship between features and the 79

target and the speed of change: in the literature, drifts 80

are categorized into sudden (abrupt), gradual, and in- 81

cremental drifts, considering the evolution of the rela- 82

tionship between features and the target and the speed 83

of change. With sudden or abrupt drifts, the current 84

data distribution changes to a new one within a short 85

period [Ramı́rez-Gallego et al., 2017]. In the case of 86

gradual drifts, this transition happens gradually [Suárez- 87

Cetrulo et al., 2023]. Here for a certain period, one could 88

observe instances from both distributions. The transi- 89

tion time is very long with incremental drifts, and there 90

may not be a statistical difference between adjacent in- 91

stances [Ramı́rez-Gallego et al., 2017]. Figure 2 shows 92

how the drift types mentioned above evolve. 93

• Reach of change: drifts that affect all of the features are 94

considered global drifts [Suárez-Cetrulo et al., 2023], 95

and drifts that affect some of the features are called local 96

drifts [Khamassi et al., 2015]. 97

• Recurrent concept drifts: if a particular data distribu- 98

tion reoccurs in the stream after a given period, it is con- 99

sidered a recurrent concept drift [Suárez-Cetrulo et al., 100

2023]. 101

• Random blips/outliers/noise: are situations where, for a 102

very short period of time, few instances which do not 103

belong to the current distribution popup in the stream 104

[Suárez-Cetrulo et al., 2023]. 105

Drift detectors 106

Many types of drift detectors are explained in the literature. 107

[Souza et al., 2020] explain three types of drift detectors for 108

Stream Learning. 109

• Methods based on differences between two distributions: 110

These methods compare the difference between two data 111

windows. A reference window with old data and a detec- 112

tion window with recent data are compared using a sta- 113

tistical test to discard the null hypothesis that both data 114

belong to the same distribution. Drift detectors based 115

on fixed-size windows usually suffer from a delay in de- 116

tection [Souza et al., 2020]. Works such as ADaptive 117

sliding WINdow (ADWIN) [Bifet and Gavalda, 2007] 118

use dynamic windows. 119

• Methods based on sequential analysis: These are meth- 120

ods founded on the Sequential Probability Ratio Test 121

(SPRT)[Wald, 1947]. CUSUM and Page–Hinkley 122

[Page, 1954] are good examples of drift detectors of this 123

type. 124

• Methods based on statistical process control: These 125

methods consider the classification problem a statisti- 126

cal process and monitor the evolution of some perfor- 127

mance indicators like error rate to apply heuristics to find 128

change points. For example, DDM [Gama et al., 2004] 129

has three different states for the classification error evo- 130

lution: in-control when the error is in the control level, 131

out-of-control when the error is increasing significantly 132

compared to the recent past, and warning, when the er- 133

ror is increasing but has not reached the out-of-control 134

level. Where DDM only looks at the magnitude of the135

errors, EDDM [Baena-Garcıa et al., 2006] also consid-136

ers the distance in time between consecutive errors.137

We would like to direct the reader to work by [Khamassi138

et al., 2018] and [Gama et al., 2014] for a thorough review of139

drift detectors for Stream Learning.140

2.2 Methods141

Similar to batch learning, Stream Learning methods can be142

categorized into supervised, semi-supervised, and clustering.143

In supervised SL, it is assumed that target values are avail-144

able for each instance. In semi-supervised Stream Learning,145

this assumption is relaxed for some instances. Target values146

may only become available at a later time or not be available147

at all. Clustering assumes the unavailability of target vari-148

ables. Akin to batch learning, supervised SL has two main149

categories: classification and regression. There are quite a150

few popular classification methods proposed in SL. Starting151

with simple but effective learners like Naive Bayes (NB) and152

Hoeffding Tree (HT) to ensemble learners like Adaptive Ran-153

dom Forest (ARF), Streaming Random Patches (SRP), and154

Continuously Adaptive Neural Networks for Data Streams155

(CAND)[Gunasekara et al., 2022c]. HT [Hulten et al., 2001]156

builds a tree using the Hoeffding bound to control its split157

decisions with a given confidence. Later an adaptive ver-158

sion of it was introduced to replace the branches when the159

data stream is evolving [Bifet and Gavalda, 2009]. Ensem-160

ble methods have shown great success in Stream Learning161

[Gomes et al., 2017a]. They allow the use of efficient SL base162

learners like HT in a bagging or random forest setting with163

efficient drift detectors like ADWIN [Gomes et al., 2019].164

ARF is an online random forest implementation for Stream165

Learning which uses effective re-sampling methods and drift166

adaptation mechanisms to cope with different types of con-167

cept drifts [Gomes et al., 2017b]. SRP trains base models on168

random subsets of features and instances identified as patches169

[Gomes et al., 2019]. It uses the same drift adaptation strat-170

egy as in ARF but produces better results than ARF. CAND171

trains a pool of simple NNs and uses the one with the smallest172

estimated loss for prediction. It employs ADWIN, an estima-173

tor to estimate each NN’s loss. As CAND uses NNs as it base174

learners, it works well on high-dimensional data. We would175

like to direct the reader to [Gomes et al., 2017a], which con-176

tains an extensive taxonomy of data stream ensemble classi-177

fiers.178

Many data stream regression methods are explained in the179

literature [Choudhary et al., 2021]. Hoeffding Tree Regres-180

sor (HTR) is an adaptation of the incremental tree algorithm181

HT for regression. Like HT, HTR uses the Hoeffding bound182

to control its split decisions. HTR relies on calculating the183

reduction of variance in the target space to find a split can-184

didate. Fast Incremental Model Trees with Drift Detection185

(FIMT-DD) learn model trees from an evolving data stream186

with drift detection [Ikonomovska et al., 2011]. It uses the187

variance reduction split criterion for splitting and the Page-188

Hinckley test for drift detection. More recent ensemble meth-189

ods for streaming regression include Adaptive Random For-190

est Regressor (ARF-REG) [Gomes et al., 2018], and Self-191

Optimising K-Nearest Leaves (SOKNL) [Sun et al., 2022].192

SOKNL claim to have superior accuracy compared to ARF- 193

REG. 194

Label availability in a streaming setting can be catego- 195

rized into four groups: (i) Immediate and fully labelled, 196

(ii) Delayed and fully labelled, (iii) Immediate and par- 197

tially labelled, (iv) Delayed and partially labelled [Gomes 198

et al., 2022]. The majority of data stream Semi-Supervised 199

Learning (SSL) is devoted to understanding (iii). However, 200

[Gomes et al., 2022] highlights the importance of understand- 201

ing the delayed and partially labelled (iv) setting. Further- 202

more, the authors categorize streaming SSL methods into: 203

(i) intrinsically SSL, (ii) self-training, and (iii) learning by 204

disagreement. Intrinsically SSL methods exploit the unla- 205

belled instances directly as part of their objective function or 206

optimization procedure [Gomes et al., 2022]. Self-training 207

methods are based on the idea that a classifier learns from 208

its previous mistakes and then reinforces itself [Gomes et al., 209

2022]. It can act as a wrapper algorithm that uses any ar- 210

bitrary classifier. Learning by disagreement works by learn- 211

ers teaching other learners. Models are trained with multiple 212

viewpoints of the same data1, which results in disagreeing 213

models. The key idea behind learning by disagreement is to 214

generate multiple learners and let them collaborate to exploit 215

the unlabelled data [Gomes et al., 2022]. 216

Data stream clustering can be categorized into: parti- 217

tion clustering, micro-cluster-based clustering, density-based 218

clustering, and hierarchical clustering [Bahri et al., 2021]. In- 219

stances from a stream are divided into segments without a 220

class label. The objective of this type of SL is to discover 221

patterns in the stream in an online fashion with a minimum 222

amount of resources. Also, algorithms deployed in this set- 223

ting should be able to cope with the evolving nature of the 224

stream. The survey by [Zubaroğlu and Atalay, 2021] contains 225

a recent and extensive study on this field. 226

2.3 Evaluation 227

Several methods are explained in the SL literature for eval- 228

uating a model. The most popular one is the test-then-train 229

approach [Bifet et al., 2018; Gama et al., 2013]. As the name 230

suggests, the evaluation uses the incoming instance to test 231

the model first and later train the model. Here the current 232

predictive evaluation is affected by the previous evaluations. 233

This may be desirable when one is interested in the model’s 234

overall performance. Test-then-train is also known as pre- 235

quential evaluation in the literature. The prequential evalua- 236

tion may not be reliable in conveying the current predictive 237

performance of the model. Therefore prequential evaluation 238

can be equipped with a sliding window, or a fading factor, to 239

gracefully forget the performance on instances from the dis- 240

tant past [Bifet et al., 2018; Gama et al., 2013]. For partly 241

labelled data, prequential evaluation is still applicable as the 242

loss can be calculated on just the labelled subset of instances 243

[Gomes et al., 2022]. Data stream cross-validation was in- 244

troduced by [Bifet et al., 2015] where models are trained and 245

tested in parallel on different folds of the data. Continuous re- 246

evaluation considers the verification latency in the streaming 247

1This could be achieved through techniques such as bootstrap-
ping aggregation.

setting with partially delayed labels [Grzenda et al., 2020b;248

Grzenda et al., 2020a]. This evaluation attempts to evaluate249

how fast a model can transform from an initial possibly incor-250

rect prediction to a correct prediction prior to the availability251

of the true label.252

There are several metrics explained in the literature to mea-253

sure the performance of an SL classification algorithm. The254

most popular one is accuracy. If the data stream is imbal-255

anced, accuracy can be misleading; sensitivity and specificity256

are better measurement alternatives [Bahri et al., 2021]. The257

kappa statistic compares the model’s prequential accuracy258

against the chance classifier (one that randomly assigns to259

each class the same number of instances as the model un-260

der consideration) [Bifet et al., 2018]. On the other hand, the261

kappa M compares the current model’s performance against262

the majority class classifier [Bifet et al., 2018]. Kappa tem-263

poral attempts to capture the temporal dependencies in a data264

stream by comparing the model performance against a ”no-265

change” model, which predicts the next instance using the266

current instance’s label [Bifet et al., 2018]2. For delayed la-267

bel situations, when multiple predictions are made for a sin-268

gle instance, accuracy and kappa values can be aggregated269

to produce immediate measures until the true label is avail-270

able [Grzenda et al., 2020a; Gomes et al., 2022].271

Regression SL uses two main evaluation metrics: (i) Root272

mean squared error (RMSE) and (ii) Mean absolute error273

(MAE) [Bahri et al., 2021]. We direct the reader to [Bifet et274

al., 2018; Bahri et al., 2021] for thorough reviews of regres-275

sion evaluation methods and [Kremer et al., 2011] for clus-276

tering evaluation methods. Furthermore, data stream evalu-277

ation also considers computing and memory usage [Bifet et278

al., 2018].279

2.4 Application280

SL has been used in many situations where learning happens281

from an evolving data stream. [Souza et al., 2020] used SL on282

data generated by optical sensors, which measure the flying283

behavior of insects to identify disease vector insects. Also284

[Gao and Lei, 2017] used SL methods for online crude oil285

price prediction. SL was used to predict power production286

considering environmental conditions by [Lobo et al., 2020].287

The study by [Žliobaitė et al., 2016] contains some interesting288

applications of SL for monitoring and control problems. It in-289

cludes application tasks such as traffic management, activity290

recognition, communication monitoring, controlling robots,291

intelligent appliances, intrusion detection, fraud detection,292

and insider trading. The study also contains some interesting293

areas where SL could provide solutions. We like to direct the294

reader to [Žliobaitė et al., 2016] for a broader understanding295

of SL applications.296

3 Continual Learning297

The literature has thoroughly documented that an NN receiv-298

ing non-IID data forgets past knowledge when confronted299

with a concept shift [Kirkpatrick et al., 2017; Mai et al.,300

2These measurements are thoroughly explained in [Bifet et al.,
2018]

2022]. CL attempts to learn with minimal forgetting of past 301

concepts [Kirkpatrick et al., 2017; Mai et al., 2022]. In OCL, 302

this learning happens online. Three main continual learn- 303

ing settings are described in the literature: task-incremental, 304

class-incremental, and domain-incremental. 305

• Task-incremental: In this setting, output distributions are 306

demarked by external task ids, available for training and 307

testing. In this setting, the model can use the external 308

task-id signal at test time [Mai et al., 2022]. 309

• Class-incremental: Each distribution consists of classes 310

that are unavailable in other distributions (tasks). This 311

setting adapts a single-head NN configuration. Here, 312

output distributions differ from task to task [Mai et al., 313

2022]. 314

• Domain-incremental, on the other hand, assumes output 315

distribution from one task to the other to be the same 316

while having different input distributions [Mai et al., 317

2022]. 318

In both class-incremental and domain-incremental settings, 319

an external task-id that separates one task from another is as- 320

sumed to be unavailable at test time. The availability of this 321

signal at training is optional. However, some CL methods 322

rely on this signal during training. Online Class Incremental 323

Continual Learning (OCICL) and Online Domain Incremen- 324

tal Continual Learning (ODICL) assume class-incremental 325

and domain-incremental OCL settings, respectively. 326

! Mt is an external memory that can be used to store a subset of
the training samples or other useful data (e.g., the classifier
from the previous time step as in LwF [31]). Note that the online
setting does not limit the usage of the samples in M, and there-
fore, the classifier f t can use them as many times as it wants.

Note that we assume, for simplicity, a locally i.i.d stream of data
where each task distribution Di is stationary as in [11,10]; how-
ever, this framework can also accommodate the setting in which
samples are drawn non-i.i.d from Di as in [32,33], where concept
drift may occur within Di.

The goal of ACL is to train the classifier f to continually learn new
samples from the data stream without interfering with the perfor-
mance of previously observed samples. Note that unless the cur-
rent samples are stored in Mt ;A

CL will not have access to these
sample in the future. Formally, at time step s;ACL tries to minimize
the loss incurred by all the previously seen samples with only
access to the current mini-batch and data from Ms"1:

min
h

Xs

t¼1

E xt ;ytð Þ ‘ f s xt; hð Þ; ytð Þ½ ' ð2Þ

Recently, [27,28] have categorized the CL problem into three
scenarios based on the difference between Di"1 and Di. Table 1
summarizes the differences between the three scenarios, i.e., task
incremental, class incremental and domain incremental. For task
incremental, the output spaces are separated by task-IDs and are
disjoint between Di"1 and Di. We denote this setting as
Yi"1f g – Yif g, which in turn leads to P Yi"1ð Þ– P Yið Þ. In this setting,
task-IDs are available during both train and test times. For class
incremental, mutually exclusive sets of classes comprise each data
distribution Di, meaning that there is no duplicated class among
different task distributions. Thus P Yi"1ð Þ– P Yið Þ, but the output
space is the same for all distributions since this setting adopts

the single-head configuration where the model needs to classify
all labels without a task-ID. Domain incremental represents the
setting where input distributions are different, while the output
spaces and distribution are the same. Note that task IDs are not
available for both class and domain incremental. Table 2 shows
examples of these three scenarios. Following this categorization,
the settings we focus on in this work are known as Online Class
Incremental (OCI) and Online Domain Incremental (ODI) with the
single-head configuration. Note that some works consider the
relaxed version of OCI with the multi-head configuration
[11,10,13], especially for methods without using memory buffer
[34,12,13].

3.2. Evaluation metrics

Besides measuring the final accuracy across tasks, it is also crit-
ical to assess how fast a model learns, how much the model forgets
and how well the model transfers knowledge from one task to
another. To this end, we use five standard metrics in the CL litera-
ture to measure performance: (1) the average accuracy for overall
performance [10]; (2) the average forgetting to measure howmuch
of the acquired knowledge the model has forgotten [8]; (3) the for-
ward transfer and (4) the backward transfer to assess the ability for
knowledge transfer [14,11]; (5) the total running time, including
training and testing times.

Formally, we define ai;j as the accuracy evaluated on the held-
out test set of task j after training the network from task 1 through
to i, and we assume there are T tasks in total.

Average Accuracy can be defined as Eq. (3). When i ¼ T;AT rep-
resents the average accuracy by the end of training with the whole
data sequence (see example in Table 3).

Average Accuracy Aið Þ ¼ 1
i

Xi

j¼1

ai;j ð3Þ

Table 1
Three continual learning scenarios based on the difference between Di"1 and Di , following [27]. P Xð Þ is the input data distribution; P Yð Þ is the target label distribution;
Yi"1f g – Yif g denotes that output space are from a disjoint space which is separated by task-ID.

Scenario Difference between Di"1 and Di Task-ID Online

P Xi"1ð Þ – P Xtð Þ P Yi"1ð Þ– P Yið Þ Yi"1f g– Yif g

Task Incremental U U U Train & Test No
Class Incremental U U No Optional

Domain Incremental U No Optional

Table 2
Examples of the three CL scenarios. (x, y, task-ID) represents (input images, target label and task identity). The main distinction
between task incremental and class incremental is the availability of task-ID. The main difference between class incremental and
domain incremental is that, in class incremental, a new task contains completely new classes, whereas domain incremental, a
new task consists of new instances with nonstationarity (e.g., noise) of all the seen classes.

Z. Mai, R. Li, J. Jeong et al. Neurocomputing 469 (2022) 28–51

30

Figure 3: Three main CL settings discussed by [Mai et al.,
2022].Task-incremental: tasks are demarked by task id. Task id is
available at the test time. Class-incremental: different classes are
present at each task. Task id is not available at the test time. Domain-
incremental: each task contains the same set of classes, but the input
distribution changes from one task to another, e.g., blur vs. noise.
Task id is not available at test time. Source: [Mai et al., 2022].

3.1 Methods 327

CL algorithms use three popular approaches to avoid catas- 328

trophic forgetting in NNs: regularization, replay, and param- 329

eter isolation. 330

• Regularization methods: algorithms like Elastic Weight 331

Consolidation (EWC) [Kirkpatrick et al., 2017] and 332

Learning without Forgetting (LWF) [Li and Hoiem, 333

2017] adjust the weights of the network in such a way 334

that it minimizes the overwriting of the weights for the 335

old concept. EWC uses a quadratic penalty to regularize 336

updating the network parameters related to the past con- 337

cept. It uses the Fisher Information Matrix’s diagonal 338

to approximate the importance of the parameters [Kirk-339

patrick et al., 2017]. EWC has some shortcomings: 1)340

the Fisher Information Matrix needs to be stored for each341

task, 2) it requires an extra pass over each task’s data at342

the end of the training [Mai et al., 2022]. Though dif-343

ferent versions of EWC address these concerns [Mai et344

al., 2022], [Chaudhry et al., 2018] seems suitable for on-345

line CL by keeping a single Fisher Information Matrix346

calculated by a moving average. LWF uses knowledge347

distillation to preserve knowledge from past tasks. Here,348

the model related to the old task is kept separate, and349

a separate model is trained on the current task. When350

the LWF receives data for a new task (Xnew, Ynew), it351

computes the output (Yold) from the old model for the352

new data Xnew. During training, assuming that ˆYold353

and ˆYnew are predicted values for Xnew from the old354

model and new model, LWF attempts to minimize the355

loss: αLKD(Yold, ˆYold) + LCE(Ynew, ˆYnew) + R [Mai356

et al., 2022]. Here LKD is the distillation loss for the357

old model, and α is the hyper-parameter controlling the358

strength of the old model against the new one. LCE is359

the cross-entropy loss for the new task. R is the general360

regularization term. Due to this strong relation between361

old and new tasks, it may perform poorly in situations362

where there is a huge difference between old and new363

task distributions [Mai et al., 2022].364

• Replay methods present a mix of old and current con-365

cept’s instances to the NN based on a given policy while366

training. This reduces forgetting as the training instances367

from the old concepts avoid complete overwriting of368

past concept’s weights. GDUMB [Prabhu et al., 2020],369

Experience Replay (ER) [Chaudhry et al., 2019], and370

Maximally Interfered Retrieval (MIR) [Aljundi et al.,371

2019] are some of the most popular CL replay methods.372

GDUMB attempts to maintain a class-balanced mem-373

ory buffer using instances from the stream. At the end374

of the task, it trains the model using the buffered in-375

stances. ER uses reservoir sampling to sample instances376

from the stream to fill the buffer. Reservoir sampling377

ensures that every instance in the stream has the same378

probability of being selected to fill the buffer. ER uses379

random sampling to retrieve instances from the mem-380

ory buffer. Despite its simplicity, ER has shown com-381

petitive performance in ODICL[Mai et al., 2022]. Five382

(three buffer and two non-buffer) tricks have been pro-383

posed by [Buzzega et al., 2021] to improve the accu-384

racy of ER in the OCICL setting. The buffer tricks385

are independent buffer augmentation, balanced reservoir386

sampling, and loss-aware reservoir sampling. The two387

non-buffer tricks are bias control and exponential learn-388

ing rate decay. Except for bias control which controls389

the bias of newly learned classes, these tricks can be390

used in ODICL to improve the performance of a re-391

play method. MIR uses the same reservoir sampling as392

ER to fill the memory buffer. However, when retriev-393

ing instances from the buffer, it first does a virtual pa-394

rameter update using the incoming mini-batch. Then it395

selects the top k randomly sampled instances with the396

most significant loss increases by the virtual parameter 397

update for training. In the online implementation in [Mai 398

et al., 2022], this virtual update is done on a copy of 399

the NN. Replay Using Memory Indexing (REMIND) 400

[Hayes et al., 2020] takes this approach to another level 401

by storing the internal representations of the instances 402

by the initial frozen part of the network and using a ran- 403

domly selected set of these internal representations to 404

train the last unfrozen layers of the network. REMIND 405

can store more instance’s representations using internal 406

low-dimensional features. In general, these replay ap- 407

proaches are motivated by how the hippocampus in the 408

brain stores and replays high-level representations of the 409

memories to the neocortex to learn from them [Hayes et 410

al., 2020]. The empirical survey by [Mai et al., 2022] 411

suggests that ER and MIR perform better on OCICL 412

and ODICL than other OCL methods. More recently 413

[Zhang et al., 2022] has proposed repeated augmented 414

rehearsal to improve replay methods. The method uti- 415

lize data argumentation for replayed instances to avoid 416

over-fitting on replay buffer data3. The approach seems 417

to improve all replay methods in general. 418

• Parameter-isolation: The intuition behind parameter- 419

isolation methods is to avoid interference by allocating 420

separate parameters for each task [Mai et al., 2022]. 421

There are two types of parameter-isolation-based meth- 422

ods: fixed architecture and dynamic architecture. Fixed 423

architecture only activates the relevant part of the net- 424

work without changing the NN architecture [Mai et al., 425

2022]. Dynamic architecture, on the other hand, adds 426

new parameters for the new task while keeping the old 427

parameters [Yoon et al., 2017; Mai et al., 2022]. Contin- 428

ual Neural Dirichlet Process Mixture (CN-DPM) [Lin, 429

2013] trains a new model for each new task and leaves 430

the existing models untouched so that at a later point, 431

it can retain the knowledge of the past tasks. It com- 432

poses of a group of experts where each expert contains a 433

discriminative model and a generative model. Each ex- 434

pert is responsible for a subset of the data. The group 435

is expanded based on the Dirichlet Process Mixture us- 436

ing Sequential Variational Approximation [Mai et al., 437

2022]. 438

We would like to direct the reader to a survey by [Mai et 439

al., 2022] for in-depth detail about those methods. 440

3.2 Evaluation 441

There are many evaluation metrics defined in the CL litera-
ture. On a stream with T tasks, after training the NN from
tasks 1 to i, let ai,j be the accuracy on the held-out test set for
task j. Average accuracy (Ai) at task i is defined as:

Ai =
1

i

i∑
j=1

ai,j (1)

3A well-documented issue in replay methods [Zhang et al.,
2022].

[Chaudhry et al., 2018]. Average forgetting (Fi) at task i is
defined as:

Fi =
1

i− 1

i−1∑
j=1

fi,j (2)

, where

fk,j = max
l∈{ 1,...,k−1}

(al,j)− ak,j∀j < k

Here fk,j is the best test accuracy the model has ever achieved
on task j prior to learning task k. ak,j is the test accuracy on
task j after learning task k [Chaudhry et al., 2018]. The pos-
itive influence of learning a new task on previous tasks’ per-
formance is measured by Positive Backward Transfer (BWT):

BWT = max

(∑T
i=2

∑i−1
j=1 ai,j − aj,j
T (T−1)

2

, 0

)
(3)

[Mai et al., 2022]. The positive influence of learning a
given task on future tasks’ performance is defined as Forward
Transfer (FWT):

FWT =

∑T−1
i=1

∑T
j=2 ai,j

T (T−1)
2

∀i < j (4)

[Mai et al., 2022]. Further to the above metrics, run-time442

and memory usage are also considered when evaluating OCL443

methods [Mai et al., 2022].444

3.3 Applications445

Recent research has focused on using ODICL methods to446

avoid costly retraining in practical situations where the model447

is confronted with a concept shift. ODICL has been used in448

X-ray image classification to avoid costly retraining on distri-449

bution shifts due to unforeseen shifts in hardware’s physical450

properties [Srivastava et al., 2021]. Also, it has been used to451

mitigate bias in facial expression and action unit recognition452

across different demographic groups [Kara et al., 2021]. Fur-453

thermore, ODICL was used to counter retraining on concept454

shifts for multi-variate sequential data of critical care patient455

recordings [Armstrong and Clifton, 2021]. The authors high-456

light some replay method’s infeasibility due to strong privacy457

requirements in clinical settings. This concern is further high-458

lighted in the empirical study by [Mai et al., 2022]. Practical459

implementations such as [Kara et al., 2021] and [Armstrong460

and Clifton, 2021] use the end of the task signal to employ461

OCL methods such as EWC and LWF. However, on the other462

hand, practical implementation in [Srivastava et al., 2021] as-463

sumes a gradual distribution shift in the input data distribution464

where instances from both the new and old tasks could appear465

in the stream for a certain period.466

4 Online Streaming Continual Learning467

In Stream Learning, the objective is to adjust to the current468

concept in the stream efficiently. On the other hand, OCL469

has dual learning objectives: adjust to the current concept470

while preserving knowledge about previous concepts. Both471

settings assume data is non-IID. In Stream Learning, it is472

assumed that model should detect distribution changes and 473

adapt accordingly. However, in OCL, the end of the con- 474

cept signal is provided at training time, even though some re- 475

play methods may not use it. This end-of-the-concept signal 476

is only provided for task-incremental CL at test time. Fig- 477

ure 1 also shows the differences between these two settings. 478

Contrary to the differences, these two fields have many inter- 479

section points. We identify these intersection points as On- 480

line Streaming Continual Learning (OSCL). In OSCL, we 481

mainly identify how well-researched Stream Learning tech- 482

niques and methods could be used to enhance OCL. 483

SL on recurrent concept drifts attempts to adjust to an 484

evolving data stream where some concepts could reemerge 485

at a later stage of the stream [Suárez-Cetrulo et al., 2023]. 486

The setting is similar to OCL but without the additional 487

learning objective of preserving old knowledge explicitly. 488

Hence evaluation in this setting does not consider how to 489

measure forgetting of past knowledge. Most of the meth- 490

ods explored in this setting keep a fixed-size pool of clas- 491

sifiers [Suárez-Cetrulo et al., 2023]. Various mechanisms 492

are explored in the literature on how to maintain this pool 493

[Suárez-Cetrulo et al., 2023; Anderson et al., 2019] and 494

how to use it for prediction [Suárez-Cetrulo et al., 2023; 495

Almeida et al., 2018]. This ”pool of classifiers” is also known 496

as ”concept history”, ”concept list”, and ”concept repository” 497

in the literature [Suárez-Cetrulo et al., 2023]. Measures like 498

concept equivalence and concept similarity were introduced 499

to identify the current concept in the data stream from the 500

concept pool. 501

• Conceptual equivalence assumes that when two classi- 502

fiers behave similarly on a given time window, both de- 503

scribe the same concept [Yang et al., 2006]. 504

• Concept similarity: recognizes similar concepts using 505

Euclidean distances between concept clusters [Li et al., 506

2012]. Thus it can detect recurring drifts in unlabelled 507

data. 508

Measures such as concept equivalence and concept sim- 509

ilarity could be used for model selection and data retrieval 510

from the replay buffer in OCL. When handling recurrent 511

concepts, predicting the following concept is helpful so the 512

learner can adjust to the incoming concept ahead of time. 513

[Chen et al., 2016] proposed a method that used a probabilis- 514

tic network to predict future changes. [Maslov et al., 2016] 515

proposed a method to use patterns acquired during previous 516

drifts to predict the time of the next drift. The method as- 517

sumed a Gaussian distribution for the duration of the con- 518

cepts. A recent survey by [Suárez-Cetrulo et al., 2023] dis- 519

cusses the above and many more exciting topics on SL for 520

recurrent concept drifts. 521

Most of the OCL methods rely on externally provided end- 522

of-concept signals (task ids) at training4. It is critical for an 523

autonomous learning agent to detect these concept shifts and 524

adjust accordingly. While OCL research has explored dif- 525

ferent methods to preserve old knowledge when adjusting to 526

4Due to internal instance buffers, some OCL models may not
need task ids at train time. The performance of these models is heav-
ily dependent upon the size of this instance buffer [Mai et al., 2022]

Topic SL OCL

Setting Single learning objective: Dual learning objective:
adjust to current concept adjust to current concept
efficiently. and preserve old knowledge.

Drift Thoroughly studied Can be used for task detection
detection Some recent OCL work:

[Gunasekara et al., 2022a],
and [Gunasekara et al., 2022b].

Drift Used when dealing with Can be used for task prediction.
prediction. recurrent concept drifts. Some SL work:

[Chen et al., 2016],
[Suárez-Cetrulo et al., 2023]

Missing Some methods have been Yet to be fully explored. Can
labels proposed to tackle this employ some of the SL

[Gomes et al., 2022]. approaches discussed in
[Gomes et al., 2022].

Recurrent Similar to OCL, without SL concept pool maintenance
concept explicit learning objective techniques
drifts to preserve old knowledge. [Suárez-Cetrulo et al., 2023]

For latest research can be useful in maintaining
refer to references to different
[Suárez-Cetrulo et al., 2023]. NN structures in OCL

parameter-isolation methods.
Concept equivalence and
concept similarity can be used
to retrieve relevant instances or
NN structures. Many more
techniques are discussed in
[Suárez-Cetrulo et al., 2023].

Evaluation Frameworks can employ OCL Employs dual learning
dual learning objective and objective.
metrics discussed in section 3.2.
So SL methods and techniques
can be evaluated under OCL
setting.

Application Suitable for applications which Suitable for applications which
needs to adjust to current concept needs to adapt to current concept
very quickly. very quickly while preserving old

knowledge.

Table 1: Synergies and differences between SL and OCL.

new concepts, SL has done an excellent job of understand-527

ing how to detect distribution shifts, especially through dif-528

ferent drift detection methods on streams with different drift529

types (abrupt, gradual, incremental, and recurrent) and dif-530

ferent label conditions (available for all instances/ delayed531

label/ no label). OCL could utilize well-researched drift532

detectors to detect the end-of-concept signal. Recent re-533

search in that direction includes Online Domain Incremental534

Pool (ODIP) [Gunasekara et al., 2022b] and Online Domain535

Incremental Networks (ODIN) [Gunasekara et al., 2022a],536

which use ADWIN as an end-of-task signal generator in an537

ODICL setting. These methods use this internal signal to ad-538

just to newly perceived concepts automatically. Recent work539

by [Davalas et al., 2022] has explored the use of drift detec-540

tors to identify when to use the data from the instance buffer541

and how to use it in an OCL setting. Having well-researched542

SL knowledge on different distribution shifts and different543

drift detectors would allow OCL algorithms to be more effec-544

tive in practical OCL scenarios, like the gradual distribution545

shifts in x-ray images [Srivastava et al., 2021].546

Furthermore, semi-supervised SL could enhance OCL to547

be more practical in situations where label data is not al-548

ways immediately available. Works like ORDisCo [Wang et549

al., 2021] and CURL [Rao et al., 2019] have already started550

exploring this research area. Semi-supervised SL methods551

under Self-training and learning by disagreement categories 552

[Gomes et al., 2022] could easily be deployed on real world 553

OCL settings where labels are not always present. However, 554

many opportunities exist considering the breadth of semi- 555

supervised SL methods discussed by [Gomes et al., 2022]. 556

Streaming clustering is another exciting area that could be 557

explored in future OCL work. Here, well-established stream- 558

ing clustering algorithms [Zubaroğlu and Atalay, 2021] could 559

solve interesting OCL problems as streaming clustering algo- 560

rithms extract patterns from evolving data. One could use a 561

streaming clustering algorithm to extract tasks from an un- 562

supervised OCL setting. The extracted information, such as 563

task information, could be used for model selection and data 564

retrieval from the replay buffer. The most exciting aspect of 565

the streaming clustering algorithms for OCL is that they are 566

well-studied for evolving data streams. 567

On the other hand, SL could adapt the dual learning objec- 568

tive in OCL (adjust to the current concept while preserving 569

knowledge about previous concepts). This would allow one 570

to evaluate the breadth of well-studied SL methods for OCL. 571

There is some emerging work in this area where catastrophic 572

forgetting is explored in HTs [Korycki and Krawczyk, 2021]. 573

Implementing the OCL evaluation discussed in [Mai et al., 574

2022] on popular SL platforms such as MOA [Bifet et al., 575

2010] and river [Montiel et al., 2021] would speed up this 576

area of research. 577

Table 1 summarizes the above-discussed synergies and dif- 578

ferences between Stream Learning and OCL. It points out the 579

differences in the settings and lists some future research di- 580

rections in Online Streaming Continual Learning. 581

5 Conclusion 582

SL attempts to adjust to an evolving data stream with multi- 583

ple concepts efficiently. The primary learning objective of the 584

model is to perform well on the current concept. For the same 585

setting, OCL, on the other hand, attempts to do well on the 586

current concept while preserving the knowledge of past con- 587

cepts. Drift detection techniques could be used to detect new 588

concepts in OCL. So that OCL models could be trained with- 589

out an external end-of-concept signal (task id). Also, mecha- 590

nisms explored in SL for recurrent concept drifts could give 591

new insights into predicting future drifts real world in OCL 592

settings. Some of the techniques and methods explored in 593

semi-supervised SL could allow OCL to be applicable in sit- 594

uations where labels are not always available. Furthermore, 595

popular SL frameworks can employ the dual learning objec- 596

tive discussed in OCL. This would allow the OCL commu- 597

nity to evaluate numerous SL methods and techniques for 598

OCL. 599

References 600

[Aljundi et al., 2019] Rahaf Aljundi, Lucas Caccia, Eugene 601

Belilovsky, Massimo Caccia, Min Lin, Laurent Charlin, 602

and Tinne Tuytelaars. Online continual learning with max- 603

imally interfered retrieval. NeurIPS, 2019. 604

[Almeida et al., 2018] Paulo RL Almeida, Luiz S Oliveira, 605

Alceu S Britto Jr, and R Sabourin. Adapting dynamic clas- 606

sifier selection for concept drift. Expert Syst. Appl., 2018. 607

[Anderson et al., 2019] Robert Anderson, Yun Sing Koh,608

G Dobbie, and A Bifet. Recurring concept meta-learning609

for evolving data streams. Expert Syst. Appl., 2019.610

[Armstrong and Clifton, 2021] Jacob Armstrong and611

D Clifton. Continual learning of longitudinal health612

records. IEEE EMBS (ITAB), 2021.613

[Baena-Garcıa et al., 2006] Manuel Baena-Garcıa, José del614

Campo-Ávila, Raul Fidalgo, Albert Bifet, Ricard Gavalda,615

and Rafael Morales-Bueno. Early drift detection method.616

In IWKDDS. Citeseer, 2006.617

[Bahri et al., 2021] Maroua Bahri, Albert Bifet, João Gama,618

Heitor M Gomes, and Silviu Maniu. Data stream analy-619

sis: Foundations, major tasks and tools. WIRE: Data Min.620

Knowl. Discov., 2021.621

[Bifet and Gavalda, 2007] Albert Bifet and Ricard Gavalda.622

Learning from time-changing data with adaptive window-623

ing. In SIAM (SDM). SIAM, 2007.624

[Bifet and Gavalda, 2009] Albert Bifet and Ricard Gavalda.625

Adaptive learning from evolving data streams. In IDA.626

Springer, 2009.627

[Bifet et al., 2010] Albert Bifet, Geoff Holmes, Richard628

Kirkby, and Bernhard Pfahringer. MOA: massive online629

analysis. J. Mach. Learn. Res., 2010.630

[Bifet et al., 2015] Albert Bifet, Gianmarco de Fran-631

cisci Morales, Jesse Read, Geoff Holmes, and Bernhard632

Pfahringer. Efficient online evaluation of big data stream633

classifiers. In 21th ACM SIGKDD, 2015.634

[Bifet et al., 2018] Albert Bifet, Ricard Gavaldà, G Holmes,635

and Bernhard Pfahringer. Machine learning for data636

streams: with practical examples in MOA. MIT, 2018.637

[Buzzega et al., 2021] Pietro Buzzega, M Boschini, A Por-638

rello, and S Calderara. Rethinking experience replay: a639

bag of tricks for continual learning. In ICPR. IEEE, 2021.640

[Chaudhry et al., 2018] Arslan Chaudhry, P K Dokania,641

T Ajanthan, and P H S Torr. Riemannian walk for in-642

cremental learning: Understanding forgetting and intran-643

sigence. In ECCV, 2018.644

[Chaudhry et al., 2019] Arslan Chaudhry, Marcus Rohrbach,645

M Elhoseiny, T Ajanthan, P K Dokania, P H S Torr, and646

M Ranzato. On tiny episodic memories in continual learn-647

ing. arXiv:1902.10486, 2019.648

[Chen et al., 2016] Kylie Chen, Yun S Koh, and P Riddle.649

Proactive drift detection: Predicting concept drifts in data650

streams using probabilistic networks. In IJCNN, 2016.651

[Choudhary et al., 2021] Ajay Choudhary, Preeti Jha, Aruna652

Tiwari, and Neha Bharill. A brief survey on concept653

drifted data stream regression. SocProS, 2021.654

[Davalas et al., 2022] Charalampos Davalas, Dimitrios655

Michail, Christos Diou, Iraklis Varlamis, and Konstanti-656

nos Tserpes. Computationally efficient rehearsal for657

online continual learning. In ICIAP. Springer, 2022.658

[Gama et al., 2004] Joao Gama, Pedro Medas, Gladys659

Castillo, and Pedro Rodrigues. Learning with drift detec-660

tion. In SBIA. Springer, 2004.661

[Gama et al., 2013] Joao Gama, Raquel Sebastiao, and Pe- 662

dro Pereira Rodrigues. On evaluating stream learning al- 663

gorithms. Mach. Learn, 2013. 664

[Gama et al., 2014] João Gama, Indrė Žliobaitė, Albert 665

Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia. 666

A survey on concept drift adaptation. ACM (CSUR), 2014. 667

[Gao and Lei, 2017] Shuang Gao and Yalin Lei. A new ap- 668

proach for crude oil price prediction based on stream learn- 669

ing. GSF, 2017. 670

[Gomes et al., 2017a] Heitor M Gomes, J P Barddal, F En- 671

embreck, and Albert Bifet. A survey on ensemble learning 672

for data stream classification. ACM (CSUR), 2017. 673

[Gomes et al., 2017b] Heitor M Gomes, Albert Bifet, Jesse 674

Read, J P Barddal, F Enembreck, Bernhard Pfahringer, 675

G Holmes, and T Abdessalem. Adaptive random forests 676

for evolving data stream classification. ML, 2017. 677

[Gomes et al., 2018] Heitor M Gomes, J P Barddal, Luis Ed- 678

uardo Boiko Ferreira, and Albert Bifet. Adaptive random 679

forests for data stream regression. In ESANN, 2018. 680

[Gomes et al., 2019] Heitor M Gomes, Jesse Read, and Al- 681

bert Bifet. Streaming random patches for evolving data 682

stream classification. In IEEE (ICDM). IEEE, 2019. 683

[Gomes et al., 2022] Heitor M Gomes, M Grzenda, Rodrigo 684

Mello, Jesse Read, Minh Huong Le Nguyen, and Albert 685

Bifet. A survey on semi-supervised learning for delayed 686

partially labelled data streams. ACM Comput. Surv., 2022. 687

[Grzenda et al., 2020a] Maciej Grzenda, H M Gomes, and 688

A Bifet. Performance measures for evolving predictions 689

under delayed labelling classification. In IJCNN, 2020. 690

[Grzenda et al., 2020b] Maciej Grzenda, Heitor M Gomes, 691

and Albert Bifet. Delayed labelling evaluation for data 692

streams. Data Min. Knowl. Discov., 2020. 693

[Gunasekara et al., 2022a] Nuwan Gunasekara, Heitor 694

Gomes, Albert Bifet, and Bernhard Pfahringer. Adaptive 695

neural networks for online domain incremental continual 696

learning. In DS 2022. Springer, 2022. 697

[Gunasekara et al., 2022b] Nuwan Gunasekara, Heitor 698

Gomes, Albert Bifet, and Bernhard Pfahringer. Adaptive 699

online domain incremental continual learning. In ICANN 700

2022. Springer, 2022. 701

[Gunasekara et al., 2022c] Nuwan Gunasekara, 702

Heitor Murilo Gomes, Bernhard Pfahringer, and Al- 703

bert Bifet. Online hyperparameter optimization for 704

streaming neural networks. In IJCNN, 2022. 705

[Hayes et al., 2020] Tyler L Hayes, Kushal Kafle, Robik 706

Shrestha, Manoj Acharya, and Christopher Kanan. Re- 707

mind your neural network to prevent catastrophic forget- 708

ting. In ECCV. Springer, 2020. 709

[Hulten et al., 2001] Geoff Hulten, Laurie Spencer, and Pe- 710

dro Domingos. Mining time-changing data streams. In 711

ACM SIGKDD, 2001. 712

[Ikonomovska et al., 2011] Elena Ikonomovska, Joao Gama, 713

and Sašo Džeroski. Learning model trees from evolving 714

data streams. Data Min. Knowl. Discov., 2011. 715

[Kara et al., 2021] Ozgur Kara, N Churamani, and H Gunes.716

Towards fair affective robotics: Continual learning for mit-717

igating bias in facial expression and action unit recogni-718

tion. arXiv:2103.09233, 2021.719

[Khamassi et al., 2015] Imen Khamassi, Moamar Sayed-720

Mouchaweh, Moez Hammami, and Khaled Ghédira. Self-721

adaptive windowing approach for handling complex con-722

cept drift. Cogn. Comput., 2015.723

[Khamassi et al., 2018] Imen Khamassi, Moamar Sayed-724

Mouchaweh, Moez Hammami, and Khaled Ghédira. Dis-725

cussion and review on evolving data streams and concept726

drift adapting. Evol. Syst., 2018.727

[Kirkpatrick et al., 2017] James Kirkpatrick, Razvan Pas-728

canu, Neil Rabinowitz, Joel Veness, G Desjardins, An-729

drei A Rusu, K Milan, J Quan, T Ramalho, Grabska-730

Barwinska, et al. Overcoming catastrophic forgetting in731

neural networks. PNAS, 2017.732

[Korycki and Krawczyk, 2021] Łukasz Korycki and Bartosz733

Krawczyk. Streaming decision trees for lifelong learning.734

In ECML PKDD. Springer, 2021.735

[Kremer et al., 2011] Hardy Kremer, Philipp Kranen, Timm736

Jansen, T Seidl, Albert Bifet, G Holmes, and Bernhard737

Pfahringer. An effective evaluation measure for clustering738

on evolving data streams. In 17th ACM SIGKDD, 2011.739

[Li and Hoiem, 2017] Zhizhong Li and Derek Hoiem.740

Learning without forgetting. IEEE Trans. Pattern Anal.741

Mach. Intell., 2017.742

[Li et al., 2012] Peipei Li, Xindong Wu, and Xuegang Hu.743

Mining recurring concept drifts with limited labeled744

streaming data. ACM (TIST), 2012.745

[Lin, 2013] Dahua Lin. Online learning of nonparametric746

mixture models via sequential variational approximation.747

NeurIPS, 2013.748

[Lobo et al., 2020] Jesus L Lobo, Igor Ballesteros, Izaskun749

Oregi, Javier Del Ser, and Sancho Salcedo-Sanz. Stream750

learning in energy iot systems: a case study in combined751

cycle power plants. Energies, 2020.752

[Mai et al., 2022] Zheda Mai, Ruiwen Li, Jihwan Jeong,753

David Quispe, Hyunwoo Kim, and Scott Sanner. Online754

continual learning in image classification: An empirical755

survey. Neurocomputing, 2022.756

[Maslov et al., 2016] Alexandr Maslov, Mykola Pech-757

enizkiy, Indreė Žliobaitė, and Tommi Kärkkäinen.758

Modelling recurrent events for improving online change759

detection. In SIAM (SDM). SIAM, 2016.760

[Montiel et al., 2021] Jacob Montiel, Max Halford, S M761

Mastelini, G Bolmier, R Sourty, R Vaysse, A Zouitine,762

Heitor M Gomes, Jesse Read, T Abdessalem, et al. River:763

machine learning for streaming data in python. 2021.764

[Page, 1954] Ewan S Page. Continuous inspection schemes.765

Biometrika, 1954.766

[Prabhu et al., 2020] Ameya Prabhu, P H S Torr, and P K767

Dokania. Gdumb: A simple approach that questions our768

progress in continual learning. In ECCV. Springer, 2020.769

[Ramı́rez-Gallego et al., 2017] Sergio Ramı́rez-Gallego, 770

B Krawczyk, Salvador Garcı́a, Michał Woźniak, and 771

F Herrera. A survey on data preprocessing for data 772

stream mining: Current status and future directions. 773

Neurocomputing, 2017. 774

[Rao et al., 2019] Dushyant Rao, Francesco Visin, A Rusu, 775

Razvan Pascanu, Yee Whye Teh, and R Hadsell. Continual 776

unsupervised representation learning. NeurIPS, 2019. 777

[Souza et al., 2020] Vinicius MA Souza, Denis M dos Reis, 778

Andre G Maletzke, and Gustavo EAPA Batista. Chal- 779

lenges in benchmarking stream learning algorithms with 780

real-world data. Data Min. Knowl. Discov., 2020. 781

[Srivastava et al., 2021] Shikhar Srivastava, M Yaqub, 782

K Nandakumar, Zongyuan Ge, and D Mahapatra. 783

Continual domain incremental learning for chest x-ray 784

classification in low-resource clinical settings. In DART, 785

FAIR. Springer, 2021. 786

[Sun et al., 2022] Yibin Sun, Bernhard Pfahringer, Heitor M 787

Gomes, and A Bifet. Soknl: A novel way of integrating k- 788

nearest neighbours with adaptive random forest regression 789

for data streams. Data Min. Knowl. Discov., 2022. 790

[Suárez-Cetrulo et al., 2023] Andrés L. Suárez-Cetrulo, 791

David Quintana, and Alejandro Cervantes. A survey 792

on machine learning for recurring concept drifting data 793

streams. Expert Syst. Appl., 2023. 794

[Wald, 1947] Abraham Wald. Sequential analysis. 1947. 795

[Wang et al., 2021] Liyuan Wang, Kuo Yang, Chongxuan Li, 796

Lanqing Hong, Zhenguo Li, and Jun Zhu. Ordisco: Effec- 797

tive and efficient usage of incremental unlabeled data for 798

semi-supervised continual learning. In CVPR, 2021. 799

[Yang et al., 2006] Ying Yang, X Wu, and X Zhu. Mining 800

in anticipation for concept change: Proactive-reactive pre- 801

diction in data streams. Data Min. Knowl. Discov., 2006. 802

[Yoon et al., 2017] Jaehong Yoon, Eunho Yang, Jeongtae 803

Lee, and Sung Ju Hwang. Lifelong learning with dynami- 804

cally expandable networks. arXiv:1708.01547, 2017. 805

[Zhang et al., 2022] Yaqian Zhang, Bernhard Pfahringer, 806

Eibe Frank, Albert Bifet, Nick Jin Sean Lim, and Yun- 807

zhe Jia. A simple but strong baseline for online continual 808

learning: Repeated augmented rehearsal. NeurIPS, 2022. 809

[Žliobaitė et al., 2016] Indrė Žliobaitė, Mykola Pechenizkiy, 810

and Joao Gama. An overview of concept drift applications. 811

Big data analysis: new algorithms for a new society, 2016. 812

[Zubaroğlu and Atalay, 2021] Alaettin Zubaroğlu and 813

Volkan Atalay. Data stream clustering: a review. AI 814

Review, 2021. 815

	Introduction
	Stream Learning
	Concept drift
	Drift detectors

	Methods
	Evaluation
	Application

	Continual Learning
	Methods
	Evaluation
	Applications

	Online Streaming Continual Learning
	Conclusion

