Nuwan Gunasekara
  • Bio
  • Papers
  • Tutorials
  • Experience
  • Projects
  • Teaching
  • Recent & Upcoming Talks
    • Example Talk
  • Publications
    • Gradient boosted bagging for evolving data stream regression
    • CapyMOA: Efficient Machine Learning for Data Streams in Python
    • Pragmatic Paradigm for Multi-stream Regression
    • Gradient boosted trees for evolving data streams
    • Recurrent concept drifts on data streams
    • Advanced Adaptive Classifier Methods for Data Streams
    • Survey on online streaming continual learning
    • Adaptive online domain incremental continual learning
    • Online hyperparameter optimization for streaming neural networks
    • Meta learning on string kernel SVMs for string categorization
    • Tuning n-gram string kernel SVMs via meta learning
  • Projects
    • FREEWAY
    • AIM-TRUE
    • KEEPER
    • CapyMOA
    • MOA
  • Teaching
    • Big Data Parallel Programming
    • Programming for Data Science (2024)
  • Tutorials
    • Machine Learning on Streaming Data
    • Machine Learning on the Fly: A Hands-On Tutorial for Streaming Data
    • Data Stream Learning with CapyMOA
  • Projects
  • Blog
    • ๐ŸŽ‰ Easily create your own simple yet highly customizable blog
    • ๐Ÿง  Sharpen your thinking with a second brain
    • ๐Ÿ“ˆ Communicate your results effectively with the best data visualizations
    • ๐Ÿ‘ฉ๐Ÿผโ€๐Ÿซ Teach academic courses
    • โœ… Manage your projects
  • Experience

Online hyperparameter optimization for streaming neural networks

Jan 1, 2022ยท
Nuwan Gunasekara
,
Heitor Murilo Gomes
,
Bernhard Pfahringer
,
Albert Bifet
ยท 0 min read
Cite
Type
Conference paper
Publication
2022 international joint conference on neural networks (IJCNN)
Last updated on Jan 1, 2022

← Adaptive online domain incremental continual learning Jan 1, 2022
Meta learning on string kernel SVMs for string categorization Jan 1, 2010 →

ยฉ 2025 Me. This work is licensed under CC BY NC ND 4.0

Published with Hugo Blox Builder โ€” the free, open source website builder that empowers creators.